Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays
نویسندگان
چکیده
In this communication, we describe microfluidic paper analytical devices (μPADs) easily fabricated from commercially available Sharpie ink permanent markers on chromatography paper to colorimetrically detect glucose using glucose oxidase (GOx). Here, solutions of horseradish peroxidase (HRP), GOx, and potassium iodide (KI)were directly spotted onto the center of the μPAD and flowed into samples of glucose that were separately spotted on the μPAD. Using an XY plotter (Roland DGA Corporation, Irvine, CA USA), several ink marks drawn in the paper act as the hydrophobic barriers, thereby, defining the hydrophilic fluid flow paths of the solutions. Two paper devices are described that act as independent assay zones. The glucose assay is based on the enzymatic oxidation of iodide to iodine whereby a color change from clear to brownish-yellow is associated with the presence of glucose. In these experiments, two designs are highlighted that consist of circular paper test regions fabricated for colorimetric and subsequent quantification detection of glucose. The use of permanent markers for paper patterning is inexpensive and rapid and does not require special laboratory equipment or technical skill.
منابع مشابه
Development of a microplate reader compatible microfluidic device for enzyme assay
We report a novel platform technology of enzyme assay using microfluidic channel. Employing the patterns of microfluidic channel on a plastic chip, the dilution of substrate solution and enzyme reactions are sequentially carried out in microfluidic channels. The microfluidic device is fabricated by micromolding processes with polydimethylsiloxane (PDMS) polymer. The device consists of microflui...
متن کاملSqueeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays.
We designed and fabricated a novel microfluidic device that can be operated through simple finger squeezing. On-chip microfluidic flow control is enabled through an optimized network of check-valves and squeeze-pumps. The sophisticated flow system can be easily constructed by combining a few key elements. We implemented this device to perform quantitative biochemical assays with no requirement ...
متن کاملA microfluidic device with fluorimetric detection for intracellular components analysis
An integrated microfluidic system that coupled lysis of two cell lines: L929 fibroblasts and A549 epithelial cells, with fluorescence-based enzyme assay was developed to determine β-glucocerebrosidase activity. The microdevice fabricated in poly(dimethylsiloxane) consists of three main parts: a chemical cell lysis zone based on the sheath flow geometry, a micromeander and an optical fibers dete...
متن کاملQuantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone.
Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible u...
متن کاملUltrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array.
Multiplexed biomarker protein detection holds unrealized promise for clinical cancer diagnostics due to lack of suitable measurement devices and lack of rigorously validated protein panels. Here we report an ultrasensitive electrochemical microfluidic array optimized to measure a four-protein panel of biomarker proteins, and we validate the protein panel for accurate oral cancer diagnostics. Un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016